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ABSTRACT 

Modeling of thermal perturbations induced by injecting fluids of different temperature into deep fractured reservoirs is important for 

design and analysis of geothermal energy production including enhanced geothermal systems, and thermal energy storage. A novel 

analytical solution was first developed to couple global heat convection-conduction in fractures with heat conduction in the rock matrix 

and aquitards. This coupling was developed by using the unified-form diffusive flux equations recently developed for various shapes of 

matrix blocks and aquitards (Zhou et al., 2017a, b). A number of generic scenarios of flow regimes and system types were considered for 

a general study. We then used TOUGH2-MP/EOS1 to model the cold-water injection test planned for the sub-vertical hydraulic fracture 

at the EGS Collab test site. Our modeling results of water injection and heat transfer in the planned fracture of dimension 12 m × 10 m 

suggest that a measurable thermal breakthrough may not occur at the production well within the test period of 100 days. This infeasibility 

may be attributed to (1) small fracture aperture (i.e., 100 μm) and (2) high heat gain from the rock matrix with a thermal diffusivity of 

𝐷𝑚 = 1.42 × 10−6 m2/s.  

1. INTRODUCTION 

Estimates of flow and heat transfer in fractures are needed for design and analysis of the EGS Collab experiments (Kneafsey et al., 2018). 

We first developed analytical solutions for modeling heat transport in general fractured reservoirs and used the developed analytical 

solutions to perform some sensitivity analysis to better understand the effect of rock properties, injection rate, and fracture aperture on 

thermal breakthrough. We then developed a TOUGH2-MP/EOS1 model for the hydraulic fracture of limited extent at the EGS Collab 

site, simulated the heat transport in the fracture and rock matrix, and performed the feasibility and design study on the injection rate and 

test duration for the thermal tests.   

A large number of analytical solutions have been developed for heat transport in idealized aquifer-aquitard systems (e.g., Lauwerier, 1955; 

Avdonin, 1964; Chen and Reddell, 1983) and fracture-matrix systems (e.g., Bodvarsson and Tsang, 1982; Ascencio et al., 2014). These 

developments are based on (1) solving the heat conduction equation in the infinite or finite aquitard/slab, (2) calculating the heat flux at 

the aquifer-aquitard or fracture-matrix interface, and (3) solving the global heat transport equation for the aquifer/fracture, all in the 

Laplace domain. Analytical or numerical Laplace inversion are used to calculate the time-domain temperature solutions (de Hoog et al., 

1982). These solutions are available for 1-D linear and radial fluid flow systems. The 1-D heat convection and conduction are considered 

in the aquifer/fracture and 1-D heat conduction in the direction normal to the aquifer/fracture is considered in the aquitard/slab. These 

solutions are specific to the system setup of an infinite aquifer/fracture and an infinite and finite aquitard/slab. In reality, a fractured 

reservoir may contain millions of connected discrete fractures of limited length and millions of matrix blocks of finite dimensions and 

shapes. In this study, we build on the long history of prior work to develop and apply analytical and numerical models to inform EGS 

Collab field testing. 

To honor the nature of a fractured reservoir that may be overlain and underlain by aquitards, we developed a suite of analytical solutions 

using the concept of transfer function developed for linear transport systems (Danckwerts, 1953; Villermaux, 1987; Sardin et al., 1991). 

The global transfer function was used to represent the convection, convection-conduction, and convection-dispersion of heat in the fracture 

network, while the local transfer function was used to represent the heat flux at the fracture-matrix interfaces. Both transfer functions were 

developed independently, and the final solutions were developed by plugging the local transfer function into the global one in the Laplace 

domain. The local transfer function was based on the unified-form diffusive flux equation recently developed for regular matrix blocks 

(e.g., cylinders, spheres, slabs, squares, cubes, rectangles, rectangular parallelepipeds) by Zhou et al. (2017a, b).  

2. ANALYTICAL SOLUTIONS OF HEAT TRANSPORT 

2.1 Procedure of Solution Development 

We developed a suite of analytical solutions using the concept of transfer function developed for linear transport systems (Danckwerts, 

1953; Villermaux, 1987; Sardin et al., 1991). The global transfer functions, 𝐺(𝑥, 𝑡), and their Laplace transforms, 𝐺∗(𝑥, 𝑠), are used to 

solve the heat transport equation for the fracture network or aquifer, where 𝑥, 𝑡, 𝑠 are the 1-D coordinate, the time, and the Laplace variable, 

respectively. The solutions of 𝐺∗(𝑥, 𝑠) for 1-D linear and radial heat convection without the coupling with aquitard/matrix block are 

denoted as 𝐺0
∗(𝑥, 𝑠) and available in the literature (e.g., Tang et al., 1981; Moench and Ogata, 1981). The local transfer function, 𝑔(𝑡), 

and its Laplace transfer, 𝑔∗(𝑠), represent the conductive heat flux through fracture-matrix/aquifer-aquitard interfaces. The local transfer 

function is often referred to as the memory function (Villermaux, 1987; Carrera et al., 1998; Haggerty et al., 2000; Dentz and Berkowitz, 

2003) in the solute transport community. The final solution for the aquifer-aquitard and fracture-matrix systems is 𝐺∗(𝑥, 𝑠) =
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𝐺0
∗(𝑥, 𝑠[1 + 𝑔∗(𝑠)]) by using 𝑠 ⇒ 𝑠[1 + 𝑔∗(𝑠)]. This procedure of solution development is completely different from the step-by-step 

derivation one that has been used solely in the heat transport community.  

Our solution procedure allows for any analytical representations of the memory function 𝑔∗(𝑠), thus relaxing the constraints of existing 

analytical solutions on the geometry of the matrix blocks. A representative elementary volume (REV) of a fractured medium can consist 

of either uniform matrix blocks with a regular shape (e.g., cylinder, sphere, slab, square, cube, rectangle, rectangular parallelepiped) and 

size, or a mixture of matrix blocks of different shapes and sizes (see Figure 1). For the system in Figure 1, the memory function can be 

developed easily for the combined effect of the mixture of matrix blocks and the aquitards. The memory function 𝑔∗(𝑠) was derived using 

the unified-form diffusive flux equation recently developed for regular shapes of matrix blocks by Zhou et al. (2017a, b).  

 

Figure 1. (a) A fractured reservoir overlain and underlain by aquitards, and (b) a portion of REV consisting of fractures and 

matrix blocks of different shapes and sizes, as well as heat convection-conduction in fractures coupled with heat conduction 

in matrix blocks. 

2.2 Block-Scale Solutions 

2.2.1 Temperature Solutions 

The heat conduction equation for a matrix block can be written 

𝜕𝑇𝑑

𝜕𝑡
= −𝐷𝑚∇ ∙ ∇𝑇𝑑,       (1) 

where 𝑇𝑑 is the dimensionless temperature of the matrix block with a constant, unit fracture temperature change and zero initial matrix 

temperature, and 𝐷𝑚 is the thermal diffusivity, and t is the time.  

For a 3-D rectangular parallelepiped with three coordinates 𝑥𝑖  (𝑖 = 1, 2, 3), we introduce the dimensionless spatial variables and the 

dimensionless times 

𝑥𝑑𝑖 = 𝑥𝑖 𝑙𝑖⁄ , 𝑡𝑑𝑖 = 𝐷𝑚𝑡 𝑙𝑖
2⁄ = 𝑅𝑙𝑖

2𝑡𝑑,      (2a) 

where the fracture half-spacing 𝑙𝑖, the aspect ratio 𝑅𝑙𝑖, and the dimensionless area-to-volume ratio 𝑅 are defined by  

𝑙 = 𝑙1 ≤ 𝑙2 ≤ 𝑙3, 𝑅𝑙𝑖 = 𝑙 𝑙𝑖⁄ , 𝑅 = 𝐴𝑙 𝑉⁄      (2b) 

where A, 𝑉 and 𝑙 are the boundary area, volume, and minimum half-width of the blocks. Note that 𝑡𝑑 = 𝐷𝑡 𝑙
2⁄  is always written in terms 

of the minimum half-width. The same definitions hold for 2-D rectangular blocks.  

It is well-known that the dimensionless temperature solution for a 1-D slab, a 2-D rectangle, and a 3-D rectangular parallelepiped can be 

written in a general product form (Crank, 1975) 

𝑇𝑑 = 1 −∏ 𝑇𝑑𝑖
′ (𝑥𝑑𝑖 , 𝑡𝑑𝑖)

𝑁𝑑
𝑖=1        (3a) 

where 𝑁𝑑 is the dimensionality of the blocks (= 1 for slabs, = 2 for rectangles, = 3 for rectangular parallelepipeds), and 𝑇𝑑𝑖
′ (𝑥𝑑𝑖 , 𝑡𝑑𝑖) is 

the 1-D slab temperature solution for the case with a unit initial temperature and zero boundary temperature, which is complementary to 

the 𝑇𝑑 solution 𝑇𝑑𝑖
′ (𝑥𝑑𝑖 , 𝑡𝑑𝑖) = 1 − 𝑇𝑑𝑖(𝑥𝑑𝑖 , 𝑡𝑑𝑖).  

For numerical evaluation, we first consider the 1-D slab complementary solution in each direction independently, and then calculate the 

early- and late-time solutions in that direction using time partitioning with its own dimensionless time (𝑡𝑑𝑖) and the same switchover 

dimensionless time 𝑡𝑑0
𝑇  (= 0.27) for slabs as follows (Zhou et al., 2017b):  

Aquitard
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Fractured Reservoir

(a)

Fracture

Matrix Block 2

Block 1

Conduction

Convection + Conduction

Block 3
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𝑇𝑑𝑖
′ (𝑥𝑑𝑖 , 𝑡𝑑𝑖) =

{
 
 

 
 1 − [erfc

1−𝑥𝑑𝑖

2√𝑡𝑑𝑖
+ erfc

1+𝑥𝑑𝑖

2√𝑡𝑑𝑖
] , 𝑡𝑑𝑖 < 𝑡𝑑0

𝑇                                                                  (3b)

4

𝜋
exp [−

𝜋2𝑡𝑑𝑖

4
] cos (

1

2
𝜋𝑥𝑑𝑖),   𝑡𝑑𝑖 ≥ 𝑡𝑑0

𝑇                                                                   (3c) 

  

We finally perform the multiplication of the calculated solutions for all the directions using (3a). The errors of the approximation solution 

in comparison with the exact exponential-series solutions or the exact error-function-series solutions are less than 0.3%. 

Figure 2 shows the contours of dimensionless temperature calculated using the developed approximate solutions for six rectangular blocks 

over the spatial domain at three selected times (𝑡𝑑 = 0.02, 0.2, and 0.5). Three rectangles with aspect ratios 𝑅𝑙2 = 1.0, 0.5, 0.2 and three 

rectangular parallelepipeds with three pairs of aspect ratios (𝑅𝑙2, 𝑅𝑙3) = (1.0, 1.0), (0.5, 0.2), (0.2, 0.1) are used. The grids for 

calculating dimensionless temperature have 201 logarithmically spaced dimensionless times in the range 𝑡𝑑 = [10
−6, 10] and 201 linearly 

spaced spatial variables 𝑥𝑑𝑖 = [0, 1]. Figures 2a-c shows the contours of dimensionless temperature at three different times for three 

rectangles with 𝑅𝑙2 = 1.0, 0.5, 0.2, respectively. At 𝑡𝑑 = 0.02, the profile of 𝑇𝑑 from the fixed-temperature boundary to the temperature 

front looks like that for a slab, except at the rectangular corner. At later time, the temperature over the entire domain is affected by the 

temperature profiles in different directions. The highly anisotropic rectangle with 𝑅𝑙2 = 0.2 acts like a slab more than the isotropic square. 

Clearly, the aspect ratio has a significant effect on the temperature distributions. As shown in Figures 2d-f, the aspect ratio in the third 

dimension also affects the temperature solution significantly at all of the three times. This indicates that heat conduction in 2-D/3-D 

rectangular blocks cannot be approximated using that in 1-D slabs.  

 

Figure 2. (a-c) Contour of dimensionless temperature (𝑻𝒅) over the 2D rectangles (𝒙𝒅𝟏, 𝒙𝒅𝟐) at 𝒕𝒅 = 𝟎. 𝟎𝟐, 𝟎. 𝟐, 𝟎. 𝟓, and (d-f) over 

3D rectangular parallelepipeds (𝒙𝒅𝟏, 𝒙𝒅𝟐) with 𝒙𝒅𝟑 =  𝒙𝒅𝟐 at 𝒕𝒅 = 𝟎. 𝟎𝟐, 𝟎. 𝟐, 𝟎. 𝟓. Note that the contour lines and their 

labels for the three rectangles with 𝑹𝒍𝟐 = 1.0 (in blue lines), 0.5 (in red), and 0.2 (in black) and the three parallelepipeds 

with (𝑹𝒍𝟐, 𝑹𝒍𝟑) = (1.0, 1.0) (in blue), (0.5, 0.2) (in red), and (0.2, 0.1) (in black). 

 

The temperature solution in 1-D slabs, 2-D rectangles, and 3-D rectangular parallelepipeds can be easily calculated using equation (3) 

with high computational efficiency and accuracy. These solutions can support the refinement of numerical schemes (e.g., dual-porosity 

and multiple interacting continuum (MINC) models), without the need of high-resolution numerical modeling (Pruess and Narasimhan, 

1985; Lim and Aziz, 1995). 

2.2.2 Fracture-Matrix Diffusive Flux Equation 

The unified-form, dimensionless transient heat flux can be written (Zhou et al., 2017a, b): 
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𝑓𝑑 = {

𝑎1 (2√𝑡𝑑) + 𝑎2 +
3

2
𝑎3√𝑡𝑑,   𝑡𝑑 < 𝑡𝑑0⁄

∑ 𝑏1𝑗𝑏2𝑗 exp(−𝑏2𝑗𝑡𝑑),     𝑡𝑑 ≥ 𝑡𝑑0
𝑁
𝑗=1

                                                     (4) 

where 𝑡𝑑0 is the switchover dimensionless time for diffusive flux, 𝑎1, 𝑎2, and 𝑎3 are the parameters for the early-time solution, and 

𝑏1𝑗 , 𝑏2𝑗 , and 𝑁 are the parameters for the late-time exponential solution. For a rectangular parallelepiped, these solution parameters are 

𝑎1 = 2(1 + 𝑅𝑙2 + 𝑅𝑙3) √𝜋⁄ , 𝑎2 = −4(𝑅𝑙2 + 𝑅𝑙3 + 𝑅𝑙2𝑅𝑙3) 𝜋⁄ ,  𝑎3 = 8𝑅𝑙2𝑅𝑙3 𝜋3/2⁄                                (5a) 

𝑏1𝑗 = (
8

𝜋2
)
3
[(2𝑛1𝑗 − 1)

2(2𝑛2𝑗 − 1)
2(2𝑛3𝑗 − 1)

2]⁄                               (5b) 

𝑏2𝑗 =
𝜋2

4
𝑐𝑗; 𝑐𝑗 = ((2𝑛1𝑗 − 1)

2 + (2𝑛2𝑗 − 1)
2
𝑅𝑙2
2 + (2𝑛3𝑗 − 1)

2
𝑅𝑙3
2 )                  (5c) 

For both 2-D and 3-D rectangular blocks, the number of exponential terms (𝑁) needed for the late-time solutions can be determined 

practically using 

𝑐𝑗 ≤ 11 with  𝑏1𝑗 exp(−𝑏2𝑗𝑡𝑑0) ≥ 𝑡𝑜𝑙                    (5d) 

Figure 3 shows the calculated dimensionless transient heat flux for the same three rectangles and rectangular parallelepipeds, as well as a 

slab. 

 

Figure 3. Dimensionless transient flux (𝒇𝒅) calculated using the combined solutions with time partitioning for 1-D slab-like and 2-

D/3-D rectangular blocks with different aspect ratios. Note that (a) is in the log-linear scale and (b) is in the log-log scale.  

 

3. NUMERICAL MODELING OF THERMAL TESTS AT THE EGS COLLAB SITE 

At the EGS Collab site, thermal tests are planned for characterizing the heat transfer properties of the stimulated fracture and the rock 

matrix (Kneafsey et al., 2018). In these planned tests, cold water will be injected into the fracture through the injection well, and water 

production will be performed at the production well to form a dipole system. The stimulation modeling shows that the hydraulic fracture 

is either a linear fracture of 12 m × 10 m with the influence of the zero stress in the drift or a radial fracture of radius of 20 m centered at 

the stimulation/injection well. No analytical solutions are available for heat transport because of the limited extent of the fracture. 

Numerical simulations were conducted using TOUGH2-MP/EOS1 (Pruess et al., 2012; Zhang et al., 2008). The main objective of these 

simulations was to show the feasibility of thermal breakthrough at the production well within a reasonable test time. The well spacing is 

10 m. The 3-D numerical mesh is shown in Figure 4 and the rock properties in the baseline case and sensitivity-analysis cases, as well as 

the water injection rate and temperature, are listed in Table 1.  
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Figure 4. 2-D irregular mesh template with 10,657 elements (left-hand side) with three fracture cases: a radial fracture with a 

radius of 20 m (in blue) or 30 m (in pink) around the injection/stimulation well and a linear fracture with 12 m × 10 m (in 

red). On the right-hand side we show the 3-D irregular mesh of ~830,000 elements formed by stacking 78 layers of the 

template along with local refinement around the fracture which is shown horizontal in this figure. Note that the actual 

fracture is expected to be vertical and the injection and production wells are horizontal.  

Table 1. Baseline and sensitivity values of fracture and matrix properties and injection parameters for the thermal-test modeling 

Rock Properties Baseline Value Sensitivity Values 

Matrix permeability 0.20 × 10-18 m2 or 0.2 μD  

Matrix porosity 0.003 (Oldenburg et al., 2016, p29)  

Matrix thermal conductivity (𝐾𝑚) 3 W/m°C 1, 0.3, 0.1, 0.01 W/m°C 

Grain density 2730 kg/m3  

Grain specific heat 775 J/kg°C  

Fracture permeability 830 × 10-12 m2 or 830 D  

Fracture porosity 1  

Fracture water thermal 

conductivity 

0.615 W/m°C  

water density 995.7 kg/m3  

water specific heat 4178 J/kg°C  

Fracture aperture 100 μm  

Injection rate (Q) 400 ml/min 4,000 ml/min 

Initial rock temperature 35 °C  

Injection temperature 5 °C  

 

As shown in Figure 5a, matrix thermal conductivity in the range between 1 and 3 W/m°C does not affect the temperature breakthrough 

curve (BTC) at the production well, but a further reduction in the matrix thermal conductivity will significantly affect the temperature 

BTC. This indicates that the uncertainty that we have in thermal conductivity of the rock at the EGS Collab site will not impact our 

interpretation of thermal breakthrough when the thermal breakthrough occurs with a negligible temperature change. Figure 5b shows the 

profiles of temperature at different distances away from the injection well in the baseline case. The heat gain from the rock matrix in 

comparison with thermal convection in the fracture increases with the distance from the injection well. This results in delayed arrival time 

of the thermal front with attenuated temperature change at distance farther away from the injection well. At the production well, the fluid 

temperature decreases by just 0.2 °C at 100 days. The delayed temperature arrival with attenuated temperature change can be attributed 

to (1) the heat gain from the rock matrix with high thermal diffusivity that is much higher than matrix tracer diffusivity, and (2) small 

fracture aperture of 100 μm. 

It appears that thermal tests at an injection rate of 400 ml/min are not feasible for generating measurable thermal breakthrough at the 

production well because of high matrix thermal diffusivity (𝐷𝑚 = 1.42 × 10−6 m2/s) and associated thermal interaction with the rock 

matrix. Sensitivity studies show thermal breakthrough is possible only for 𝐷𝑚 = 4.3 × 10−8 m2/s with a matrix thermal conductivity of 

0.01 W/m°C. This indicates that multitracer tests with different injection rates and diffusivity may be suitable for assessing the heat-

transfer performance and effective heat transfer area. The thermal tests are feasible at the production well only with a higher injection rate 

(4,000 ml/min, see Figure 5a) or locally at the injection well by monitoring cooling-induced changes in fracture aperture using the SIMFIT 

tool specifically designed for the EGS Collab project. In the latter, the injection time can be short and the cooling-induced aperture change 

can be local near the injection well. 
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Figure 5. (a) Thermal breakthrough curves for the baseline and reduced wet matrix thermal conductivity and increased injection 

rate, while all other parameters are kept at their baseline values (left-hand side), and (b) baseline profiles of temperature 

in the fracture and rock matrix at different distances from the injection well. 

4. CONCLUSIONS 

A fractured reservoir may contain millions of connected discrete fractures of limited length and millions of matrix blocks of finite 

dimensions and shapes. This fractured reservoir may be idealized by assuming (1) 1-D linear or radial fluid flow in the network of uniform-

aperture fractures, and (2) a mixture of matrix blocks with regular shapes (e.g., cylinder, sphere, slab, square, cube, rectangle, rectangular 

parallelepiped) and different sizes in a representative elementary volume (REV) of the fractured medium. In this case, novel analytical 

solutions were developed to couple global heat convection-conduction in fractures with heat conduction in the rock matrix. Using the 

concept of transfer functions, we combined (1) the global transfer function for heat convection, convection-conduction, and convection-

dispersion in the fracture network and (2) the local transfer function (i.e., memory function) using the unified-form diffusive flux equations 

recently developed for various shapes of matrix blocks and aquitards (Zhou et al., 2017a, b). A number of generic scenarios of flow 

regimes and system types was considered and presented. 

For the EGS Collab test site, the planned sub-vertical hydraulic fracture is of a limited extent, radial or linear, and no analytical solutions 

are available. A TOUGH2-MP/EOS1 model was developed and run with the site-specific rock properties and injection rate. The modeling 

results for the linear fracture of 12 m × 10 m show that the thermal tests may not produce measurable thermal breakthrough at the 

production well within the test period of 100 days. This infeasibility may be attributed to (1) small fracture aperture (i.e., 100 μm) and 

high heat gain from the rock matrix with a thermal diffusivity of 𝐷𝑚 = 1.42 × 10−6 m2/s. The infeasibility may be mitigated by using a 

higher injection rate (i.e., 4 L/min) or focusing on the cooling-induced aperture change near the injection well that can be tracked using 

the SIMFIT tool.    
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